成都电子元器件网成都PCB机元器件成都多层电路板线路板厂商 免费发布多层电路板信息

线路板厂商

更新时间:2024-05-07 04:34:15 编号:c02mk3vpv7679f
分享
管理
举报
  • 面议

  • PCB多层线路板

  • 6年

陈生

18938919530 1036958619

微信在线

产品详情

关键词
PCB多层线路板
面向地区

线路板厂商

PCB线路板过孔对信号传输的影响作用

过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。

一、过孔的寄生电容

过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1)过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF,这部分电容引起的上升时间变化量为:T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps 。从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,设计者还是要慎重考虑的。

二、过孔的寄生电感

同样,过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH。如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。

联兴华电子深圳pcb线路板厂家,公司成立于2005年,是一家以生产批量。样板及快板PCB为主的企业,提供单面pcb线路板、双面pcb线路板、pcb多层线路板、PCB线路板制作生产,PCB线路板产品等快速打样、深圳电路板制作17年行业经验。

三、高速PCB中的过孔设计

通过上面对过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的过孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到:

1、从成本和信号质量两方面考虑,选择合理尺寸的过孔。比如对6-10层的内存模块PCB设计来说,选用10/20Mil(钻孔/焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使用8/18Mil的过孔。目前技术条件下,很难使用更小尺寸的过孔了。对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗。

2.上面讨论的两个公式可以得出,使用较薄的PCB板有利于减小过孔的两种寄生参数。

3、电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好,因为它们会导致电感的增加。同时电源和地的引线要尽可能粗,以减少阻抗。

4、PCB板上的信号走线尽量不换层,也就是说尽量不要使用不必要的过孔。

5、在信号换层的过孔附近放置一些接地的过孔,以便为信号提供近的回路。甚至可以在PCB板上大量放置一些多余的接地过孔。当然,在设计时还需要灵活多变。前面讨论的过孔模型是每层均有焊盘的情况,也有的时候,我们可以将某些层的焊盘减小甚至去掉。特别是在过孔密度非常大的情况下,可能会导致在铺铜层形成一个隔断回路的断槽,解决这样的问题除了移动过孔的位置,我们还可以考虑将过孔在该铺铜层的焊盘尺寸减小。

PCB线路板调试技术之六类模块

在PCB抄板及设计工作中,我们常常要对电路板进行调试与测试,六类模块电路板的调试就是其中一种,为了能让大家更好的理解六类模块电路板的调试技术,我先给大家简单的介绍一下六类模块。六类模块的核心部件是线路板,其设计结构、制作工艺基本上就决定了产品的性能指标,六类模块执行的标准是 EIA/TIA 568B.2-1,当中为重要的参数是插入损耗、回波损耗、近端串扰等。

插入损耗 (Insert Loss):由于传输通道阻抗的存在,它会随着信号频率的增加而使信号的高频分量衰减加大,衰减不仅与信号频率有关,也与传输距离有关,随着长度的增加,信号衰减也会随着增加。回波损耗(Return Loss):由于产品中阻抗发生变化,就会产生局部震荡,致使信号反射,被反射到发送端的一部分能量会形成噪音,导致信号失真,降低传输性能。如全双工的千兆网,会将反射信号误认为是收到的信号而引起有用信号的波动,造成混乱,反射的能量越少,就意味着通道采用线路的阻抗一致性越好,传输信号越完整,在通道上的噪音就越小。回波损耗RL的计算公式:回波损耗=发射信号÷反射信号。
  

在设计中,阻抗的全线路一致性以及与100欧姆阻抗的六类线缆配合是解决回波损耗参数失效的有效手段。例如PCB线路的层间距离不均匀、传输线路铜导体截面变化、模块内的导体与六类线缆导体不匹配等,都会引起回波损耗参数变化。近端串扰(NEXT): NEXT是指在一对传输线路中,一对线对另一对线的信号耦合,即为当一条线对发送信号时,在另一条相邻的线对收到的信号。这种串扰信号主要是由于临近绕对通过电容或电感耦合过来的,通过补偿的办法,抵消、减弱其干扰信号,使其不能产生驻波是解决该参数失效的主要办法。

在模块试制阶段,用理论做指导,以计算机辅助设计为依据,就能很快的达到预期效果。在国内进行的六类模块PCB设计中,主要以线路对角补偿理论做依据,进行大量的试制工作,同样也可达到预期效果。模块与插头引起的信号外漏现象会发生相互间的信号干涉,为防止信号干涉现象,在平衡链路中导体进行扭绕,达到平衡传输的目的,扭绕结构会造成信号间的相位变化,也会增大线路上的信号衰减,这个结构称之为非屏蔽结构(UTP)。4对平衡双绞线中,每对线的绞距不同,线缆尾端使用模块化的连接件,形成连接件和接插件之间的相连,相互连接区内形成导体之间进行的平衡结构,即为六类系统的链路。在链路内产生了在平衡线路中所发生的信号干扰现象,即为串扰,解决串扰问题是进行高速通信用连接件制造的核心技术。
  

在接触端子之间产生接触损失会导致衰减、反射损失等现象,这种损失在高速信号传输时,会产生障碍和故障,解决这类问题是进行高速通信用连接件制造的核心技术。在模块与插头的连接线路中,插头内的每对连接端子是平衡线路,平衡线路中导体会产生信号外漏及阻抗损耗,阻碍通信的大因素就是信号外漏。可通过研究E场和H场解决此类问题或从研究反向衰减的方法中寻找解决方案,这是高速通信用连接件制造的核心技术。E场和H场平衡线路上所发生的信号干扰,即电磁场干扰,可通过E场和H场的分布进行描述。



电子通信线路测试的主要参数是扫频下进行的相关测量,在这个频率信号上附加语音或数据包进行传输,传输速度越高频率越快。用信号外漏的解决方法来解释产生问题的插座信号外漏现象,基本的方法是根据电感和电容所发生的信号外漏仿真图,在信号集中区域收集信号并进行返送。在设计中,耦合电容的设计是关键参数,与耦合线路的长度、线间距离、宽度、补偿线路布置等有关。考虑到六类系统采用4对线同时传输信号,必然会对其产生综合远端串绕,可通过分析,进行计算机仿真,设计出补偿线路。国内同行一般进行的六类模块试制过程主要是在确定主干回路后,在设计出补偿回路,进行大量的方案设计和样品制作,在补偿线路、PCB层间结构基本确定后,后续工作主要是通过工艺改进,从而提。

什么是HDI线路板
一.什么是HDI板?
HDI板(High Density Interconnector),即高密度互连板,是使用微盲埋孔技术的一种线路分布密度比较高的电路板。HDI板有内层线路和外层线路,再利用钻孔、孔内金属化等工艺,使各层线路内部实现连结。
二.HDI板与普通pcb的区别
HDI板一般采用积层法制造,积层的次数越多,板件的技术档次越高。普通的HDI板基本上是1次积层,高阶HDI采用2次或以上的积层技术,同时采用叠孔、电镀填孔、激光直接打孔等PCB技术。当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
HDI板的电性能和讯号正确性比传统PCB更高。此外,HDI板对于射频干扰、电磁波干扰、静电释放、热传导等具有更佳的改善。高密度集成(HDI)技术可以使终端产品设计更加小型化,同时满足电子性能和效率的更高标准。
HDI板使用盲孔电镀 再进行二次压合,分一阶、二阶、三阶、四阶、五阶等。一阶的比较简单,流程和工艺都好控制。二阶的主要问题,一是对位问题,二是打孔和镀铜问题。二阶的设计有多种,一种是各阶错开位置,需要连接次邻层时通过导线在中间层连通,做法相当于2个一阶HDI。第二种是,两个一阶的孔重叠,通过叠加方式实现二阶,加工也类似两个一阶,但有很多工艺要点要特别控制,也就是上面所提的。第三种是直接从外层打孔至第3层(或N-2层),工艺与前面有很多不同,打孔的难度也更大。对于三阶的以二阶类推即是。

在PCB打样中,HDI造价较高,故一般的PCB打样厂家都不愿意做。捷多邦可以做别人不愿意做的HDI盲埋PCB板。现阶段,捷多邦采用的HDI技术已突破高层数为20层;盲孔阶数1~4阶;小孔径0.076mm,工艺为激光钻孔.
三.HDI板的优势
这种PCB在突显优势的基础上发展迅速:
1.HDI技术有助于降低PCB成本;
2.HDI技术增加了线密度;
3.HDI技术有利于使用的包装;
4.HDI技术具有更好的电气性能和信号有效性;
5.HDI技术具有更好的可靠性;
6.HDI技术在散热方面更好;
7.HDI技术能够改善RFI(射频干扰)/EMI(电磁干扰)/ESD(静电放电);
8.HDI技术提高了设计效率;
四.HDI板的材料
对HDI PCB材料提出了一些新的要求,包括更好的尺寸稳定性,抗静电移动性和非胶粘剂。HDI PCB的典型材料是RCC(树脂涂层铜)。RCC有三种类型,即聚酰亚胺金属化薄膜,纯聚酰亚胺薄膜,流延聚酰亚胺薄膜。
RCC的优点包括:厚度小,重量轻,柔韧性和易燃性,兼容性特性阻抗和的尺寸稳定性。在HDI多层PCB的过程中,取代传统的粘接片和铜箔作为绝缘介质和导电层的作用,可以通过传统的抑制技术用芯片抑制RCC。然后使用非机械钻孔方法如激光,以便形成微通孔互连。
RCC推动PCB产品从SMT(表面贴装技术)到CSP的发生和发展(芯片级封装),从机械钻孔到激光钻孔,促进PCB微通孔的发展和进步,所有这些都成为RCC的HDI PCB材料。
在实际的PCB中在制造过程中,对于RCC的选择,通常有FR-4标准Tg 140C,FR-4高Tg 170C和FR-4和Rogers组合层压,现在大多使用。随着HDI技术的发展,HDI PCB材料满足更多要求,因此HDI PCB材料的主要趋势应该是:
1.使用无粘合剂的柔性材料的开发和应用;
2.介电层厚度小,偏差小;
3 .LPIC的发展;
4.介电常数越来越小;
5.介电损耗越来越小;
6.焊接稳定性高;
7.严格兼容CTE(热膨胀系数);
五.HDI板制造的应用技术
HDI PCB制造的难点在于微观通过制造,通过金属化和细线。
1.微通孔制造
微通孔制造一直是HDI PCB制造的核心问题。主要有两种钻井方法:
a.对于普通的通孔钻孔,机械钻孔始终是其率和低成本的佳选择。随着机械加工能力的发展,其在微通孔中的应用也在不断发展。
b.有两种类型的激光钻孔:光热消融和光化学消融。前者是指在高能量吸收激光之后加热操作材料以使其熔化并且通过形成的通孔蒸发掉的过程。后者指的是紫外区高能光子和激光长度超过400nm的结果。
有三种类型的激光系统应用于柔性和刚性板,即准分子激光,紫外激光钻孔,CO 2 激光。激光技术不仅适用于钻孔,也适用于切割和成型。甚至一些制造商也通过激光制造HDI。虽然激光钻孔设备成本高,但它们具有更高的精度,稳定的工艺和成熟的技术。激光技术的优势使其成为盲/埋通孔制造中常用的方法。如今,在HDI微通孔中,99%是通过激光钻孔获得的。
2.通过金属化
通孔金属化的大困难是电镀难以达到均匀。对于微通孔的深孔电镀技术,除了使用具有高分散能力的电镀液外,还应及时升级电镀装置上的镀液,这可以通过强力机械搅拌或振动,超声波搅拌,水平喷涂。此外,在电镀前增加通孔壁的湿度。
除了工艺的改进外,HDI的通孔金属化方法也看到了主要技术的改进:化学镀添加剂技术,直接电镀技术等。
3.细线
细线的实现包括传统的图像传输和激光直接成像。传统的图像转移与普通化学蚀刻形成线条的过程相同。
对于激光直接成像,不需要摄影胶片,而图像是通过激光直接在光敏膜上形成的。紫外波灯用于操作,使液体防腐解决方案能够满足高分辨率和简单操作的要求。不需要摄影胶片,以避免因薄膜缺陷造成的不良影响,可以直接连接CAD/CAM,缩短制造周期,使其适用于和多种生产。
六.结尾
硬件工程师刚接触多层PCB的时候,很容易看晕。动辄十层八层的,线路像蜘蛛网一样。
今天画了几张多层PCB电路板内部结构图,用立体图形展示各种叠层结构的PCB图内部架构。

图片高密度互联板的核心在过孔
多层PCB的线路加工,和单层双层没什么区别,大的不同在过孔的工艺上。
线路都是蚀刻出来的,过孔都是钻孔再镀铜出来的,这些做硬件开发的大家都懂,就不赘述了。
多层电路板,通常有通孔板、一阶板、二阶板、二阶叠孔板这几种。更高阶的如三阶板、任意层互联板平时用的非常少,价格贼贵,先不多讨论。
一般情况下,8位单片机产品用2层通孔板;32位单片机级别的智能硬件,使用4层-6层通孔板;Linux和Android级别的智能硬件,使用6层通孔至8一阶HDI板;智能手机这样的紧凑产品,一般用8层一阶到10层2阶电路板。

图片
8层2阶叠孔,高通骁龙624

只有一种过孔,从层打到后一层。不管是外部的线路还是内部的线路,孔都是打穿的,叫做通孔板。

图片

通孔板和层数没关系,平时大家用的2层的都是通孔板,而很多交换机和电路板,做20层,还是通孔的。
用钻头把电路板钻穿,然后在孔里镀铜,形成通路。
这里要注意,通孔内径通常有0.2mm、0.25mm和0.3mm,但一般0.2mm的要比0.3mm的贵不少。因为钻头太细容易断,钻得也慢一些。多耗费的时间和钻头的费用,就体现在电路板价格上升上了。
高密度板的激光孔
图片

这张图是6层1阶HDI板的叠层结构图,表面两层都是激光孔,0.1mm内径。内层是机械孔,相当于一个4层通孔板,外面再覆盖2层。
激光只能打穿玻璃纤维的板材,不能打穿金属的铜。所以外表面打孔不会影响到内部的其他线路。
激光打了孔之后,再去镀铜,就形成了激光过孔。
2阶HDI板 两层激光孔
图片

这张图是一个6层2阶错孔HDI板。平时大家用6层2阶的少,大多是8层2阶起。这里更多层数,跟6层是一样的道理。
所谓2阶,就是有2层激光孔。
所谓错孔,就是两层激光孔是错开的。
为什么要错开呢?因为镀铜镀不满,孔里面是空的,所以不能直接在上面再打孔,要错开一定的距离,再打上一层的空。
6层二阶=4层1阶外面再加2层。
8层二阶=6层1阶外面再加2层。
叠孔板 工艺复杂价格更高
图片

错孔板的两层激光孔重叠在一起。线路会更紧凑。
需要把内层激光孔电镀填平,然后再做外层激光孔。价格比错孔更贵一些。
超贵的任意层互联板 多层激光叠孔
就是每一层都是激光孔,每一层都可以连接在一起。想怎么走线就怎么走线,想怎么打孔就怎么打孔。

多层板PCB设计时的EMI解决
解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。
电源汇流排

在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由于电容呈有限频率响应的特性,这使得电容 无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要 的共模EMI干扰源。我们应该怎麽解决这些问题?

就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。

当然,电源层到IC电源引脚的连线尽可能短,因为数位信号的上升沿越来越快,好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。

为了控制共模EMI,电源层要有助于去耦和具有足够低的电感,这个电源层是一个设计相当好的电源层的配对。有人可能会问,好到什麽程度才算好?问题 的答案取决于电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等 效电容约为75pF。显然,层间距越小电容越大。

上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在 100到300ps范围的器件将占有很高的比例。对于100到 300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小于1mil的分层技术,并用介电常数很高的材料代替FR4介 电材料。现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。

尽管未来可能会采用新材料和新方法,但对于今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。

电磁屏蔽

从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对于电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。

PCB堆叠

什麽样的堆叠策略有助于屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍后讨论。

4层板

4层板设计存在若干潜在问题。,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。

如果成本要求是位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用于板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。

种为方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也 低。从EMI控制的角度看,这是现有的佳4层PCB结构。第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间 阻抗和传统的4层板一样欠佳。

如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。

6层板

如果4层板上的元件密度比较大,则好采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。

例将电源和地分别放在第2和第5层,由于电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。

第二例将电源和地分别放在第3和第4层,这一设计解决了电源覆铜阻抗问题,由于第1层和第6层的电磁屏蔽性能差,差模EMI增加了。如果两个外 层上的信号线数量少,走线长度很短(短于信号高谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无元件和无走线区域铺铜填充并将 覆铜区接地(每1/20波长为间隔),则对差模EMI的抑制特别好。如前所述,要将铺铜区与内部接地层多点相联。

通用6层板设计 一般将第1和第6层布为地层,第3和第4层走电源和地。由于在电源层和接地层之间是两层居中的双微带信号线层,因而EMI抑制能力是的。该设计的缺点 在于走线层只有两层。前面介绍过,如果外层走线短且在无走线区域铺铜,则用传统的6层板也可以实现相同的堆叠。

另一种6层板布局为信号、地、信号、电源、地、信号,这可实现信号完整性设计所需要的环境。信号层与接地层相邻,电源层和接地层配对。显然,不足之处是层的堆叠不平衡。

这通常会给加工制造带来麻烦。解决问题的办法是将第3层所有的空白区域填铜,填铜后如果第3层的覆铜密度接近于电源层或接地层,这块板可以不严格地算作 是结构平衡的电路板。填铜区接电源或接地。连接过孔之间的距离仍然是1/20波长,不见得处处都要连接,但理想情况下应该连接。

10层板

由于多层板之间的绝缘隔离层非常薄,所以10或12层的电路板层与层之间的阻抗非常低,只要分层和堆叠不出问题,完全可望得到的信号完整性。要按62mil厚度加工制造12层板,困难比较多,能够加工12层板的制造商也不多。

由于信号层和回路层之间总是隔有绝缘层,在10层板设计中分配中间6层来走信号线的方案并非佳。另外,让信号层与回路层相邻很重要,即板布局为信号、地、信号、信号、电源、地、信号、信号、地、信号。

这一设计为信号电流及其回路电流提供了良好的通路。恰当的布线策略是,第1层沿X方向走线,第3层沿Y方向走线,第4层沿X方向走线,以此类推。直观地 看走线,第1层1和第3层是一对分层组合,第4层和第7层是一对分层组合,第8层和第10层是后一对分层组合。当需要改变走线方向时,第1层上的信号线 应藉由“过孔"到第3层以后再改变方向。实际上,也许并不总能这样做,但作为设计概念还是要尽量遵守。

同样,当信号的走线方向变化时, 应该藉由过孔从第8层和第10层或从第4层到第7层。这样布线可确保信号的前向通路和回路之间的耦合紧。例如,如果信号在第1层上走线,回路在第2层且 只在第2层上走线,那麽第1层上的信号即使是藉由“过孔"转到了第3层上,其回路仍在第2层,从而保持低电感、大电容的特性以及良好的电磁屏蔽性能。

如果实际走线不是这样,怎麽办?比如第1层上的信号线经由过孔到第10层,这时回路信号只好从第9层寻找接地平面,回路电流要找到近的接地过 孔 (如电阻或电容等元件的接地引脚)。如果碰巧附近存在这样的过孔,则真的走运。假如没有这样近的过孔可用,电感就会变大,电容要减小,EMI一定会增加。

当信号线经由过孔离开现在的一对布线层到其他布线层时,应就近在过孔旁放置接地过孔,这样可以使回路信号顺利返回恰当的接地层。对于第4层和第7层 分层组合,信号回路将从电源层或接地层(即第5层或第6层)返回,因为电源层和接地层之间的电容耦合良好,信号容易传输。

多电源层的设计

如果同一电压源的两个电源层需要输出大电流,则电路板应布成两组电源层和接地层。在这种情况下,每对电源层和接地层之间都放置了绝缘层。这样就得到我们 期望的等分电流的两对阻抗相等的电源汇流排。如果电源层的堆叠造成阻抗不相等,则分流就不均匀,瞬态电压将大得多,并且EMI会急剧增加。

如果电路板上存在多个数值不同的电源电压,则相应地需要多个电源层,要牢记为不同的电源创建各自配对的电源层和接地层。在上述两种情况下,确定配对电源层和接地层在电路板的位置时,切记制造商对平衡结构的要求。

总结

鉴于大多数工程师设计的电路板是厚度62mil、不带盲孔或埋孔的传统印制电路板,本文关于电路板分层和堆叠的讨论都局限于此。厚度差别太大的电路板,本文推荐的分层方案可能不理想。此外,带盲孔或埋孔的电路板的加工制程不同,本文的分层方法也不适用。

电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压小并将信 号和电源的电磁场屏蔽起来的关键。理想情况下,信号走线层与其回路接地层之间应该有一个绝缘隔离层,配对的层间距(或一对以上)应该越小越好。根据这些基 本概念和原则,才能设计出总能达到设计要求的电路板。现在,IC的上升时间已经很短并将更短,本文讨论的技术对解决EMI屏蔽问题是的。

FPC柔性电路有哪些主要材料?

在柔性电路中使用的主要材料是绝缘簿膜、胶黏剂和导线。绝缘簿膜形成了电路的基础。胶黏剂将铜箔黏接到绝缘簿膜上,在多层结构设计中,内部有许多层被黏合在了一起。使用外保护层将电与砂尘和潮气相隔绝,与此同时还可以降低在挠曲时所受的应力。导电层是由铜箔提供的。

在一些柔性电路中,采用铝或者不锈钢作为加强肋,以确保几何尺寸的稳定性。同时还可以提供在元器件和连接器插入时的机械支撑力,以及消除掉应力。加强肋采用胶黏剂黏接在柔性电路上面。

有时在柔性电路中采用的另外一种材料是黏接片(bond ply),它是由两面涂覆有胶黏剂的绝缘簿膜构成。黏接片能够提供环境保护和电气绝缘,它能够起到取消簿膜层和在层数较少的多层电路中起到黏接的作用。

许多绝缘簿膜可以从市场上采购到,常用的是聚酰亚胺和涤纶材料(如表1所示)。在美国的所有柔性电路制造厂商中,接近80%的厂商是采用聚酰亚胺簿膜作为柔性电路的材料,大约20%的制造厂商结合采用涤纶簿膜。

聚酰亚胺材料具有不易燃、几何尺寸稳定的特点,拥有较高的抗撕裂强度,并且能够忍受焊接时的高温。涤纶也称为聚对苯二甲酸乙二醇脂(polyethylene terephthalate 简称PET),物理性能与聚酰亚胺相类似,具有较低的介电常数和能够吸附少量的潮气,但是耐高温的能力较差。

涤纶的熔化点在250℃,它的玻璃化转变温度(Tg)为80℃,这些参数限制了它们在需要进行大量焊接的场合的使用。在低温状态下,它们较硬,但是它们仍适用于在电话以及其他不暴露在恶劣环境下工作的电子产品中使用。

聚酰亚胺绝缘簿膜通常与聚酰亚胺或者丙烯酸胶黏剂一起使用,绦纶绝缘簿膜一般与绦纶胶黏剂一起使用。在焊接或者在整个多层层压周期操作以后,黏接好的材料具有令人满意的特性优点,即稳定的几何尺寸。在胶黏剂中的其他重要特性是较低的介电常数、较高的绝缘阻抗、较高的玻璃化转变温度和较低的吸湿性。

在柔性电路中除了采用绝缘簿膜与导电材料相互黏接以外,胶黏剂也被用作防护涂覆来使用,它可以形成覆盖层(也称为coverlays)和表面涂层。这两者之间的主要差异在于所采用的应用方式不同。覆盖层是将胶黏剂覆盖在层压有电路的绝缘簿膜上面,而表面涂层是通过表面印刷的方式涂布胶黏剂。

不是所有的层压结构都要与胶黏剂相接合,不采用胶黏剂的层压结构与采用胶黏剂的层压结构相比较,能够提供更簿的电路、更佳的柔软性和更好的导热率。簿型结构的导热率和不采用耐热胶黏剂的结构,允许不采用胶黏剂的电路在不宜采用胶黏剂为基础的层压簿片的工作场合中使用。

在柔性电路中所使用的铜箔可以采用电沉积或者采用锻制的方式获得。采用电沉积制造的箔片一面是有光泽的,而另外一面是没有光泽的,它形成了可以弯曲的材料,可以形成不同的厚度尺寸和宽度尺寸。

由电沉积制成的箔片的无光泽一面常常需要采用特殊处理,以求改善其黏接性能。采用锻制方式形成的铜箔除了可以弯曲以外,具有一定的硬度和表面光滑度,可以适应要求动态柔性活动的场合使用。

PCB板材的Tg值

业界长期以来,Tg值是常见的用来划分FR-4基材的等级指标,通常认为Tg值越高,材料的可靠性越高。

比如下图老wu在南亚上边截取的关于FR-4板材的说明:

Tg135℃,板材用途:主机板、消费类电子产品等

Tg180℃,板材用途:CPU主板,DDR3 内存基板,IC封装用基板等等。

基材对于印刷电路板的作用,就像印刷电路板对于电子器件的作用一样重要。按照PCB的基材按性质可分为有机基板和无机基板两个大的体系。

有机基板由酚醛树脂浸渍的多层纸层或环氧树脂、聚酰亚胺、氰酸酯、BT 树脂等浸渍的无纺布或玻璃布层组成。这些基板的用途取决于 PCB 应用所需的物理特性,如工作温度、频率或机械强度。

无机基板主要包括陶瓷和金属材料,如铝、软铁、铜。这些基板的用途通常取决于散热需要。

我们常用的刚性印制板基板属于有机基板,比如FR-4环氧玻纤布基板,是以环氧树脂作粘合剂,以电子级玻璃纤维布作增强材料的一类基板。

我们看到,FR-4以环氧树脂作为粘合剂,树脂材料有一个重要特性参数:玻璃化转变温度Tg(glass transition temperature),指的是材料从一个相对刚性或“玻璃”状态转变为易变性或软化状态的温度转变点。

玻璃态物质在玻璃态和高弹态之间相互可逆转化的温度。啥意思?就是说FR-4基板的粘合剂环氧树脂若温度低于Tg,这时材料处于刚硬的“玻璃态”。当温度Tg时,材料会呈现类似橡胶般柔软可挠的性质。对!它~变【软】了~ 图片



玻璃态

树脂材料处于温度Tg以下的状态为坚硬的固体即玻璃态。在外力作用下有一定的变形但变形可逆,即外力消失后,其形变也随之消失,是大多数树脂的使用状态。

高弹态

当树脂受热温度超过Tg时,无定形状态的分子链开始运动,树脂进入高弹态。处于这一状态的树脂类似橡胶状态的弹性体,但仍具有可逆的形变性质。

注意,温度超过Tg值后,材料逐渐变软,是逐渐,而且只要树脂没有发生分解,当温度冷却到Tg值以下时,它还是可以变回之前性质相同的刚性状态。

氮素,有个Td值,叫热分解温度,树脂类材料被加热至某一高温点时,树脂体系开始分解。树脂内的化学键开始断裂并伴随有挥发成分溢出,那PCB基材里的树脂就变少了。Td点指的是这个过程开始发生的温度点。Td通常定义为失去原质量5%时对应的分解温度点。但这5%对于多层PCB来说是非常高的了。

我们知道,影响PCB上传输线特性阻抗的因素有,线宽,走线与参考平面间距,板材介电常数等等。而基板材料的树脂量对介电特性有很大的影响,而且树脂挥发后对控制走线与参考平面的间距也有影响。

对于无铅焊接工艺需要考虑这个Td值,比如传统的锡铅焊接工艺温度范围为210~245℃,而无铅焊接工艺温度范围为240~270℃。

下边两个这个截图是老wu在建滔官网上下载的两份板材的参数表做的对比,左边的是FR-4常规系列板材,右边是FR-4无铅板材

常规FR4 板材 KB-6160 Tg值为135℃,5%质量损失Td值为305℃

FR4无铅板材 KB-6168LE Tg值为 185℃,5%质量损失Td值为359℃

我们看到,常规FR4板材的Td值都在300℃以上,而有铅焊接工艺温度范围在240~270℃,Td值完全满足哇,为啥还要搞个无铅版本呢?

正如老wu上边所述,5%的树脂质量挥发率对于需要控制阻抗的多层PCB来说显得太大了,对于锡铅焊接工艺来说,210~245℃的温度材料基本不会出现明显的热分解,而无铅焊接的240~270℃温度区间,对于普通Tg FR-4 基材来说,已经开始损失1.5~3%的树脂质量。虽然不到IPC标准所要求的5%,但这损失的树脂质量也不可忽视。同时,这个分解水平,还可能会影响基材长期的可靠性或导致焊接过程中出现分层或空洞的缺陷,特别是需要多次焊接的过程或存在返修加热的情况。

所以,如果采用无铅焊接工艺的话,除了考虑Tg值,还要考虑Td值。

基板材料的性能在Tg值以上和在Tg值以下时差异很大,不过,Tg值一般被描述为一个非常的温度值,比如Tg135,并不是说温度一超过135℃基板就变得软趴趴,而是当温度接近Tg值开始,材料的物料性能会开始改变,它是一个逐步变化的过程。

树脂体系的Tg值对材料的性能影响主要有两个方面:

热膨胀的影响

树脂体系固化时间

板材受热膨胀,脑补一下画面,SMT焊接时BGA焊盘的间距是不是也就跟着变化了?而且,热膨胀导致的机械应力,会对PCB上的走线和焊盘的连接造成细微的裂纹,这些裂纹可能在PCB生产完毕后的开/短路测试时不会被发现,而在SMT等二次加热后故障就显现出来了,这往往让人很懵逼,而糟糕的情况是,SMT加热时暗病都没出现,在产品出去之后,在冷热交替的使用环境中,板材的受热膨胀让这些细微的裂纹随机性的发生,造成设备故障。

基板材料热性能参数除了标准Tg、Td值,还有热膨胀系数CTE,有X/Y轴方向的CTE也有Z轴方向的CTE。

Z轴的CTE对PCB的可靠性有很重要的影响。由于镀覆孔贯穿PCB的Z轴,所以基材中的热膨胀和收缩会导致镀覆孔扭曲和塑性形变,也会使PCB表面的铜焊盘变形。

而SMT时,X/Y轴的CTE则变得非常重要。特别是采用芯片级封装(CSP)和芯片直接贴装时,CTE的重要性更为,同时,X/Y轴的CTE也会影响覆铜箔层压板或PCB的内层附着力和抗分层能力。特别是采用无铅焊接工艺的PCB来说,每一层中的X/Y轴CTE值就显得尤其重要了。

那么,是不是高Tg值的基材就是好呢?在关于Tg值的许多讨论中,往往认为较高的Tg值总是对基材有利的,但情况也并非总是如此。可以确定的是,对于一种给定的树脂体系,高Tg值基材在受热时的材料高速率膨胀开始时间要相对晚一些,而整体膨胀则与材料的种类有很大关系。低Tg值的基材可能会比高Tg值的基材表现出更小的整体膨胀,这主要与树脂本身的CTE值,或者树脂配方中加入无机填料 降低了基材的CTE有关。

同时还要注意的是,有些低端的FR-4材料,标准Tg值是140℃的基材比标准Tg值是170℃的基材具有更高的热分解温度Td值。如上边老wu所述,Td对于无铅焊接来说是一个很重要的指标,一般建议选择Td数值较大的,而的FR-4往往同时具备高的Tg值和高Td值。

此外,高Tg值的基材往往比低Tg值的基材刚性更大且更脆,这往往会影响PCB制造过程的生产效率,特别是钻孔工序。

比如某创就发帖子说明,随着板子越来越密,过孔与过孔之间的间隙越来越小,对于材料要求越来越高,为此某创将提供TG=155的中TG板材为多层板收费服务!

为啥多收费?

TG=155的板材比TG=135的成本高20%左右,嗯 来料贵了

因为钻孔,中TG用新钻钻咀效果更佳(一般钻咀能磨4次),因为太硬

压合时间:普通TG=135的只需要压合110分钟,而中TG=1 55的压合150分钟

为啥要提供中或高Tg板材,板厂那边说,原因之一是因为高密的过孔,普通TG的过孔间距不能小于12MIL,而中TG不能小于 10MIL,因为板材有玻璃布,在钻孔的时候会有一些拉伤,两个过孔之间你拉一点我拉一点就形成了灯芯效应,而中TG因为硬,板材内的成份不一样,又加上用新钻咀能有效的防范灯芯效应,后续对于难度高的多层板,过孔间间隙太密,某创会强制客选择用中TG板材生产!

原因之二是基板的Tg提高了, 印制板的耐热性、耐潮湿性、耐化学性、耐稳定性等特征都会提高和改善。TG值越高,板材的耐温度性能越好,尤其在无铅喷锡制程中,高Tg应用比较多。

这是从板厂的可制造性方面考虑,而如果是PCB装配采用无铅焊接工艺的话,还需要综合考虑玻璃化转变温度Tg、分解温度Td、热膨胀系数CTE、吸水率、分层时间等等因素。

留言板

  • PCB多层线路板
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

公司资料

深圳市赛孚电路科技有限公司
  • 马志强
  • 广东 深圳
  • 私营有限责任公司
  • 2011-07-26
  • 人民币1000万
  • 301 - 500 人
  • PCB电路板
  • pcb电路板,pcb多层板,hdi线路板,pcb快板
小提示:线路板厂商描述文字和图片由用户自行上传发布,其真实性、合法性由发布人负责。
陈生: 18938919530
在线联系: 1036958619
让卖家联系我